Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract High fracture density in fault damage zones not only reduces the elastic stiffness of rocks but may also promote time‐dependent bulk deformation through the sliding of fracture and thus alter the stress in fault zones. On comparing the damage zones of the three faults in the Chelungpu fault system encountered in the Taiwan Chelungpu fault Drilling Project (TCDP), the youngest damage zone showed pronounced sonic velocity reduction even though fracture density is the same for all three fault zones, consistent with the shorter time for velocity recovery in the youngest fault. Caliper log data showed a time‐dependent enlargement of the borehole wall at the damage zone. These damage zones record lower differential stress than the surrounding host rock, which cannot be explained by the reduced elastic stiffness in the damage zone. Stress relaxation caused by time‐dependent bulk deformation in the damage zone may be responsible for the observed low differential stress.more » « less
-
Abstract The Cracked Chevron Notched Brazilian Disc (CCNBD) method was selected for Mode I fracture toughness tests on Poorman schist, Yates amphibolite, and rhyolite dikes from the EGS Collab site at the SURF in Lead, South Dakota. The effects of lithology, anisotropy, and loading rate were investigated. Fracture toughness was greatest in amphibolite, with schist and rhyolite having similar toughness values ( $${K}_{amphibolite}$$ K amphibolite > $${K}_{rhyolite}$$ K rhyolite ≈ $${K}_{schist}$$ K schist ). The effects of anisotropy on fracture toughness were investigated in the foliated schist samples. Schist samples were prepared in three geometries (divider, arrester, and short transverse) which controlled how the fracture would propagate relative to foliations. The divider geometry was strongest and short transverse geometry was the weakest ( $${K}_{divider}$$ K divider > $${K}_{arrester}$$ K arrester > $${K}_{short transverse}$$ K shorttransverse ). Fracture toughness was observed to decrease with decreasing loading rate. Optical and SEM microscopy revealed that for the short transverse geometry, fractures tended to propagate along grain boundaries, whereas in arrester and divider geometries fractures tended to propagate through grains. In foliated samples, the tortuosity of the fracture observed in thin section was greater in arrester and divider geometries than in short transverse geometries.more » « less
-
Abstract Understanding the stress state before and after an earthquake is essential to study how stress on faults evolves during the seismic cycle. This study integrates wellbore failure analysis, laboratory experiments, and edge dislocation model to study the stress state before and after the Chi‐Chi earthquake. The post‐earthquake in‐situ stress state observed along boreholes of the Taiwan Chelungpu‐fault Drilling Project (TCDP) is heterogeneous due to lithological variations. Along the borehole, we observe that drilling‐induced tensile fractures are only present in sandstones, whereas breakouts are mostly present in silt‐rich rocks. Laboratory experiments on TCDP cores also show that tensile and compressive strength are weaker in sandstones than in silt‐rich rocks. These observations imply that both maximum and minimum horizontal principal stresses are higher in silt‐rich intervals. Extended leak‐off tests in the TCDP borehole also show lower minimum horizontal stress in sand‐rich intervals, consistent with the above observations. We combine these observations to estimate a profile of stress magnitudes along the well which explains the variability of stress states found in previous studies. The stress heterogeneity we observed underlines the importance of acknowledging the spatial scale that the stress data represent. We then use an edge dislocation model constrained by GPS surface displacements obtained during Chi‐Chi earthquake to calculate the coseismic stress changes. Our inferred pre‐earthquake stress magnitudes, obtained by subtracting the coseismic stress change from the post‐earthquake stress, suggest subcritical stress state before the earthquake despite the large displacements observed during the Chi‐Chi earthquake in the region where TCDP encountered the fault.more » « less
-
Abstract Phyllosilicate minerals, due to their sheets structure and morphology, are known to cause anisotropy in bulk rock properties and make the bulk rock more compliant. Accurately characterizing the micromechanical behavior of phyllosilicate minerals from laboratory observations, which eventually translates to the bulk rock behavior, is still challenging due to their fine‐grained nature. Recent advances in atomistic simulations open the possibility of theoretically investigating such mineral mechanical behavior. We compare the elastic properties of biotites recovered by spherical nanoindentation with those predicted from density functional theory (DFT) simulations to investigate to what extent theoretical predictions reproduce actual phyllosilicate properties. Spherical nanoindentation was conducted using schist rocks from Poorman Formation, South Dakota, USA, to recover continuous indentation stress‐strain curves. Loading in the layer‐normal orientation shows an average indentation modulus () of about 35 GPa, while loading in the layer‐parallel orientation gives a higher average of about 95 GPa. To facilitate comparison, the elastic stiffness constants (cij) determined from DFT were converted to indentation modulus () using solutions proposed in this study. The majority of the nanoindentation modulus results are below the values inferred from the simulation results representing ideal defect‐free minerals. We suggest that crystal defects present at the nano‐scale, potentially ripplocations, are the dominant cause of the lower indentation modulus recovered from nanoindentation compared to those inferred from DFT simulations. Results highlight the importance of acknowledging the defects that exist down to the nano‐scale as it modifies the mechanical properties of phyllosilicates compared to its pure defect‐free form.more » « less
An official website of the United States government
